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A surface dislocation model of wear 

M.J. MARCINKOWSKI  
Department of Mechanical Engineering and Engineering Materials Group, 
University of Maryland, College Park, Maryland20742, USA 

A model of sliding wear, based upon the concept of surface dislocations, has been 
proposed. In particular, a dislocation cell structure is created in the plastically deformed 
surface layer, which in turn gives rise to shear crack initiation at the interface between 
this surface layer and the undeformed interior of the body. These shear cracks then grow 
with subsequent delamination of the surface layers. It is shown that the most important 
parameter in this theory is the rate of work hardening of the materials in question. 

1. Introduction 
The problem of wear is essentially one of surface 
deformation and involves both elastic and plastic 
distortions. A unified theory of deformation has 
been developed within the last few years wherein 
any distortion can be described in terms of some 
suitable and unique distribution of surface dis- 
locations [1, 2]. It should thus be possible in 
principle to develop a surface dislocation model 
of wear which is both physically exact and math- 
ematically precise. 

Within recent years, various dislocation models 
have been proposed to account for sliding or 
adhesive wear [3-8].  They are all based upon the 
formation of a shear crack at some distance below 
the wear surface, whose growth leads to subsequent 
delamination of the plastically deformed surface 
layer. Crack formation has in turn been related to 
the formation of cell walls [9-12].  The mechan- 
ism of cell wall formation is however at present 

) 

somewhat obscure, from which it follows that 
crack formation therefrom is even more difficult 
to account for. A detailed theory of wear via the 
delamination mechanism will be presented in the 
following sections which overcomes these various 
conceptual obstacles. 

2. Basic distortions 
Since the wear process consists of two surfaces 
that are in contact and moving relative to one 
another, such as the standard pin-on-disc, it seems 
reasonable to assume that the principal distortions 
will be those of simple compression or shear, or 

combinations thereof. We shall therefore consider 
such distortions in some detail. Fig. la, for 
example, shows an undeformed reference body 
which subsequently undergoes a simple elastic 
compression in response to the stress cr so as to 
generate the configuration shown in Fig. lb. It has 
been shown [I,  2, 13] that the state of elastic stress 
represented in Fig. lb can be described in terms 
of two sets of surface dislocations which are 
dotted in the figure. The inner or primary array of 
dislocations accounts for the primary distortion 
within the body, i.e. its vertical contraction, 
whereas the outer or secondary surface dislocation 
array relates to the barrelling effect associated 
with the body, i.e. the lateral expansion. Both 
surface dislocation arrays are in fact comprised of 
continuous distributions of dislocations of infini- 
tesimal Burgers vectors. 

In order to relieve the high internal stresses 
occasioned by the surface dislocations, crystal 
lattice dislocations with discrete Burgers vectors 
are generated within the interior of  the body such 
as shown by the solid symbols in Fig. 1 c. These 
lattice dislocations climb to the surface of the 
body and combine with both the primary and 
secondary surface dislocations to either eleminate 
or add respectively a length L of surface element, 
i.e. a plane of atoms, in accordance with the 
following reaction: 

bL + Z bs ~ L (1) 

where b L is the Burgers vector of the lattice 
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Figure ] Reference block (a) in the 
undeformed state, (b) subjected to 
simple elastic compression, and (c) 
after plastic compression and with 
stress removed. (d) Same as (c), but 
with slip on planes at 45 ~ to the 
compression axis. 
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dislocation, while bs is that  associated with the sur- 

face dislocations. It also follows that  bL = -  !;bs 
while IbLI = L. Equation 1 is thus the basis o f  
plastic deformation,  and although it has been 

described with respect to the pure dislocation 
climb mechanism of  Fig. l c ,  the equivalent 
distort ion could also have been produced by  pure 
dislocation glide as portrayed in Fig. l d. In this 
latter case, the dislocations are shown to move on 
places o f  maximum resolved shear stress, i.e. planes 
inclined at 45 ~ with the horizontal.  Even after the 

applied load is removed, such as in Figs. lc  and d, 
some o f  the surface dislocations still remain so as 
to satisfy the stress-free boundary conditions 
arising from those lattice dislocations which still 
remain within the body,  i.e. have not  yet  reached 
the surface and undergone the reactions in accord- 
ance with Equation 1. 

The second important  mode o f  deformation 
with which we shall be concerned is illustrated in 
Fig. 2 where the undeformed reference block 
Fig. 2a is subjected to a simple elastic shear stress 
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. i .  x, / x/ x " / .  Figure 2 Block (a) in the undeformed 
state, (b) elastically deformed in 
response to a simple shear stress, and 
(c) plastically deformed with stress 
removed. (d) Same as (c), but with 
slip on planes at 45 ~ to the shear 
direction. 
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tr to generate the configuration shown in Fig. 2b. 
The inner set of surface dislocations, which are 
again shown dotted, correspond to the primary 
array and account for the primary distortion 
which manifests itself in the rotation of the 
vertical faces of the body [1, 2, 13]. The outer, 
or secondary surface dislocation array, in Fig. 2b 
is related to the distortions on the horizontal 
faces of the body, upon which the stress tr is 
applied, and corresponds to a slight rotation of 
these faces. It is thus sufficient in this case to show 
only the effects of the single set of primary dis- 
locations. In particular, as in the case already 
described With respect to Fig. 1, these surface 
dislocations can induce the generation of lattice 
dislocations within the body which in turn glide to 
the surface and give rise to the reaction expressed 
by Equation 1 to produce the plastically deformed 
state shown in Fig. 2c, i.e. a state of pure simple 
plastic shear. In this case, the length L in Equation 
1 corresponds to steps or ledges on the vertical 
faces of the deformed body. The plastic distortion 
of Fig. 2c can also be produced by the generation 
of lattice dislocations on planes oriented 45 ~ with 
respect to the shear direction as indicated in 
Fig. 2d. In this respect, Fig. 2d corresponds to 
Fig. ld. 

3. Cell wall formation 
At sufficiently high plastic strains, the dislocations 
within the crystal arrange themselves into well- 

defined walls, in turn giving rise to the formation 
of virtually dislocation-free cells [14-18]. The 
observation that there is considerable misorien- 
tation across some of the cell walls has led to the 
formation of a model of cell wall formation based 
upon the theory of grain boundaries [19]. On the 
other hand, the density of dislocations at the cell 
walls, especially at high strains [14, 16], is so 
enormous that their description solely in terms 
of grain boundaries seems inappropriate. In order 
to overcome this difficulty, let us consider the 
formation of the cell wall configuration depicted 
in Fig. 3a, in response to the compressive stress a. 
Here, it is assumed that slip occurs on a single 
system within each cell, and on one of two planes 
at 45 ~ to the applied stress, i.e. the plane of maxi- 
mum resolved shear stress. Such will be the case 
if the crystal is not oriented exactly as shown in 
Fig. 3a, and/or if local stresses give rise to a bias 
towards one of the two slip systems. The dislo- 
cations which comprise the cell wall in this 
figure are the resultant of the combination of 
dislocations from the two adjacent cells, and they 
are clearly seen to generate tilt-type boundaries. 

If, on the other hand, slip occurs simultaneously 
within each individual cell on the two available 
slip Systems, the cell wall configuration depicted 
in Fig. 3b will obtain. In this case, the cell walls 
consist of arrays of dislocation dipoles, with no 
misorientation across the walls. At the later stages 
of cell wall formation, it would seem that the 
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Figure 3 Cell wall formation in two dimensions under compression via (a) tilt boundary and (b) dipole formation. 
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Figure 4 (a) Edge-type dislocation within a finite body. After dislocation in (a) has moved to surface and (b) not under- 
gone or (c) undergone annihilation with surface dislocations. 

configuration depicted in Fig. 3b would be the 
logical choice, since each cell would have rotated 
into a position where the maximum resolved 
shear stress on each of  the two slip systems was 
essentially the same. The model shown in Fig. 3b 
is also appealing from the point of  view that it 
allows very high densities of  dislocations to exist 
within the cell walls without giving rise to corre- 
sponding large misorientations across the walls, 
in agreement with experimental observations. 
On the other hand, the configurations depicted 
in Figs. 3a and b correspond to limiting cases, and 
in reality, most cell walls will consist of  com- 
binations of  both,  i.e. possess tilt bounda12r and 
dipole character, depending upon local conditions 
within the crystal. 

One of the more interesting aspects of  the cell 
wall configurations of  Figs. 3a and b is that they 
both posses low energies of  about the same magni- 
tude .  This can be most easily seen by making use 
of  surface dislocation considerations. In particular, 
consider the edge dislocation within a finite body,  
as depicted in Fig. 4. In order to satisfy the stress- 
free boundary conditions on the surface of the 
body originating from the stress field of  the lattice 
dislocation, an array of  surface dislocations 
(shown dotted) must be distributed over these 
surfaces [1, 2, 13]. It is in fact the surface dis- 
locations which account for the distortions; 
i.e. shape change, associated with the outer sur- 
faces of  the finite body.  As the lattice dislocation 
moves toward the surface, the surface dislocations 
are pulled closer to the lattice dislocation, as 
illustrated in Fig. 4b. It is important to note, 
however, that  the lattice and surface dislocations 

in this figure are not yet combined. Combination 
in fact gives rise to the ledge configuration depicted 
in Fig. 4c, and corresponds to the reaction given 
by Equation 1 towards the right. It follows that 
all of  the eleastic distortion is removed by the 
complete combination of surface and lattice 
dislocations. 

I f  now an edge-type dislocation dipole within 
a finite body is considered, the configuration 
shown in Fig. 5 is obtained. In this particular case, 
all of  the surface dislocations associated with the 
pair of  lattice dislocations annihilate one another 
so that the outer surface of the finite body 
remains undistorted. This result also follows from 
St Venant's principle which states that at distances 

Figure 5 l)islocation dipole within a finite body. 1299 
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Figure 6 Joining of the two sets of surface ledges in (a) to 
form the vertical array of dislocation dipoles in (b). 

on the order of  the separation between the various 
sources of  stress, they can be considered as a 
combined entity [20]. 

A vertical array of  dislocation dipoles can be 
formed by first considering the pair of  half spaces 
depicted in Fig. 6a, each face of  which contains 
ledges of  the type shown in Fig. 4c, but which 
alternate in sign. If  these two half spaces are 
forced into coalescence, the surface dislocations 
annihilate one another, while the lattice dislocations 
form a vertical array of  edge-type dipoles, as 
illustrated in Fig. 6b. This particular array of  
dislocations is of  relatively low energy since the 
distortions are limited to a distance o f  the order 
of  the separation, between the dipoles, and thus 
accounts for the stability of  the cell wall configur- 
ation shown in Fig. 3b. 

In order to comprehend fully the fundamental 
significance of  the tilt-type boundary, let us first 
consider the half space shown in Fig. 7a whose 
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Figure 7 Flattening of the surface ledges in (a) to form 
the smooth surface shown in (b). 

surface contains equally-spaced ledges of  the 
same sign. If  now the ledges are eliminated by 
flattening the stepped surface, the configuration 
in Fig. 7b obtains�9 The elimination o f  the ledges 
by this process is equivalent to the reaction given 
by Equation 1 towards the left which in effect 
uncouples the surface dislocations from the lattice 
dislocation. The half space o f  Fig. 7b can next be 
combined with its mirror image to generate the 
symmetric tilt boundary of  Fig. 8. A tilt boundary 
may thus be viewed as an alternating array of  
lattice and surface dislocations of  opposite sign 
[21-23]�9 In this respect, it closely resembles the 
array of  dislocation dipoles illustrated in Fig. 6b. 
The relatively low energy of  the cell wall configur- 
ation in Fig. 3a is thus readily accounted for. 

Suppose now that the plastic deformation 
depicted in Fig. 3b is confined to the upper sur- 
face of  the body. The dislocation configuration 
illustrated in Fig. 9a would then obtain. Note that 
the cell wall morphology would be identical to 
that given in Fig. 3b, except for one important 
difference. In particular, the dislocation array at 



Figure 8 Tilt boundary of misorientation 14.25 ~ formed 
by joining the inclined surface of Fig. 7b to its mirror 
image. 

the junction between plastically deformed and 
undeformed regions now consists o f  a horizontal 
array of  edge-type dislocations of  the same sign 
whose Burgers vectors lie parallel to the junction. 
The effect of  this array o f  dislocations is shown 

(a) 

in Fig. 9b which is a somewhat more schematic 
version o f  Fig. 9a. In particular, the horizontal 
array of  lattice dislocations gives rise to long-range 
stresses which induce surface dislocations on the 
faces of  the body so as to insure stress-free bound- 
ary conditions. It is also clear that the plastic 
deformation associated with Fig. 9b has caused 
the lateral dimensions of  the deformed layer to 
increase. If  the plastic distortions in the upper 
half o f  the body shown in Fig. 9a were o f  the type 
shown in Fig. 3a rather than Fig. 3b, the con- 
figuration depicted in Fig. 9b would still obtain. 
The significance of  this highly stressed interface 
between deformed and undeformed crystal with 
respect to wear will be the subject o f  further 
discussion. 

Just as the lattice dislocations arranged them- 
selves in the form of  cell walls in Fig. 3 in response 
to a compressive stress, such is also expected to be 
the case if the externally applied stress is one of  
shear. This can be seen by reference to Fig. l Oa 
where, as in the case o f  Fig. 3a, only a single slip 
system is allowed to be activated within each cell. 
However, unlike the case shown in Fig. 3a, the 
arrangement in Fig. 10a generates stresses which 
are o f  the order of  the cell dimensions rather than 
the spacing between dislocations within the cell 
walls. This occurs because the dislocations within 
each segment of  cell wall are all of  the same sign 
with Burgers vectors parallel to the wall. This 
configuration is thus expected to be o f  somewhat 
higher energy than that depicted in Fig. 3a. How- 
ever, if double slip is allowed to occur within each 
cell, the cell wall will consist o f  arrays o f  dislo- 
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Figure 9 (a) Same as Fig. 3b, but with plastic deformation confined to the upper half of body. (b) Schematic illus- 
tration of the shape change associated with the deformation in (a). 

1301 



-4 

-q 

T 

\ 
< 

J_ 

L 

.,L ..L J_ 
T 

t-  / / / / ~ - t  

& 
T T T 

I- -I ~- 

_L _L _L 
T T T 

(a) " a 

Figure 10 Cell wall formation in two dimensions under shear 
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via (a) single and (b) double slip within each cell. 

cation dipoles as illustrated in Fig. 10b. Unlike the 
case shown in Fig. 3b, the dipoles in Fig. 10b have 
their Burgers vectors parallel t o the  cell walls. This 
however has no significant effect on the energy, 
so that the energies of  the configurations depicted 
in Figs. 3b and 10b are expected to posses very 
nearly the same relatively low value. 

If, however, the plastic shear distortion of  
Fig. 10b is confined to the upper half of the 
crystal, the cell wall configuration illustrated in 
Fig. 1 la obtains. In this particular instance, unlike 
the case associated with compressive distortions in 
Fig. 9a, the interface between the deformed and 
undeformed regions comprises a horizontal array 
o f  dislocations of  like sign with Burgers vectors 
normal to the array, i.e. a symmetric tilt boundary. 
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As we have already seen in connection with Fig. 8, 
any complete description o f  a tilt boundary must 
include the lattice dislocations along with the 
corresponding surface dislocations. A more 
schematic version o f  Fig. 1 la  is therefore redrawn 
in Fig. 1 lb to emphasize this important consider- 
ation. It thus follows that unlike the case depicted 
in Fig. 9b, the junction between deformed and 
undeformed crystal in Fig. 1 lb has associated with 
it only short-range stresses, and is thus o f  relatively 
low energy. 

4. Mechanism of delamination 
In order to understand how a cell wall could act 
as a preferred site for crack nucleation and growth, 
let us first consider the behaviour of  a crack within 

I-- ..! I-- ..{ [--- ..! l -  --". 

(a) (b) 

Figure 11 (a) Same as Fig. 10b, hut with plastic deformation confined to the upper half of the body. (b) Simplified 
version of (a), showing surface dislocations. 
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Figure 12 Tensile crack (a) within a perfect 
crystal, (b) along a cell wall. Shear crack 
(c) within a perfect crystal, (d) along a cell 
wall. 
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a perfect crystal. In particular, Fig. 12a depicts 
an elastic tensile type crack in terms of  an array 
of  surface dislocations [1, 2]. The total energy 
of  such a crack can be written as: 

ET = ES + EI + E3' -- Eo (2) 

where Es is the self energy of  all the surface dislo- 
cations, E x their total interaction energy, E.y is the 
surface energy of  the crack, while E o is the work 
done on the crack dislocations by the applied 
stress. 

I f  now a tensile crack forms along a cell wall 
which consists of  dislocation dipoles, such as 
illustrated in Figs. 3b, l l a  or l l b ,  the configur- 
ation shown in Fig. 12b obtains. The dipoles are 
denoted by solid symbols. Each dipole has 
associated with it an energy per tlnit length of  cell 
wall given by [24] 

ED -- 4~rr(1--u) In + (3) 

where/J is the shear modulus, b the Burgers vector 
of  the dislocations comprising the dipole, u is 
Poisson's ratio, r '  the extension of  the dipole, and 
ro the core radius o f  the dislocation. Since the 
dipoles are annihilated by crack formation, the 

energy given by Equation 3 is released and 
Equation 2 now becomes 

E T  = E s  qu E i  _{. E.), - -  E D -- /3"  o-'. (4) 

We may now define a new effective surface energy 
given by 

E~, = E~- -ED.  (S) 

For r '  in Equation 3 about 6b, it is a simple matter 
to show that E D becomes nearly the same as Ev, 
so that crack formation and propagation becomes 
enormously simplified along cell walls for this 
reason alone. There is yet another contribution 
which reduces the energy for crack formation 
along the cell wall in Fig. 12b. This is due to the 
fact that the applied stress does work as the pair 
of  dislocations comprising the dipoles move 
toward one another in response to this stress. This 
energy contribution per unit length of  cell wall is 
given by 

abr'  
E D o -  2r ' "  (6) 

The total energy associated with the applied stress 
in Equation 4 is thus 

E~' = Eo + EDo (7) 

where E o is the work done by the applied stress on 
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the crack dislocations alone. As in the case of E D 

given by Equation 3, EDa can also be quite large, 
i.e. of  the order of  the surface energy, E. r. 

The arguments given above for tensile cracks 
also apply to shear-type cracks. In particular, 
Fig. 12c depicts an elastic shear crack within a 
perfect crystal. When the elastic shear crack is 
allowed to form along a cell wall of the type 
shown in Fig. lOb, which again comprises dislo- 
cation dipoles, but of  different orientation to 
those shown in Fig. 3b, the crack configuration 
illustrated in Fig. 12d obtains. The same arguments 
that were used for the tensile crack can also be 
extended to the shear-type crack. In particular, 
the energies associated with the shear cracks of 
Figs. 12c and d can be represented by Equations 
2 and 4 respectively. 

Tensile cracks of  the type shown in Fig. 12b 
can be immediately ruled out in the case of sliding- 
type wear since the external stresses associated 
with this wear mechanism involve compressive as 
well as shear stresses. It is also clear from Fig. 9 
that the compressive stresses per se do not contri- 
bute to crack nucleation and growth, but instead 
gives rise to the dislocation substructure which 
facilitates easy crack growth. 

Although we have already seen that a shear 
crack can easily form at cell walls of  the dipole 
type shown in Fig. 10b, the dislocation interface 
shown in Fig. 9b is of  particular interest with 
respect to shear crack growth. The reason for this 
is that the dislocation configuration has associated 
with it long-range stresses, and thus correspond- 
ingly high strain energies. Upon application of an 
applied stress, o, the strain energy can be relieved 
by the formation of an asymmetric shear crack, as 
shown in Fig. 13a, The creation of the crack 
involves the rearrangement of the uniformly 
spaced interface dislocations into a pile-up of 
crack dislocations with the same total Burgers 
vector. As a rough approximation, the dislocation 
configuration depicted in Fig. 9b can be simplified 
to that shown in Fig. 13b, while that illustrated 
in Fig. 13a can be redrawn as shown in Fig. 13c. 
The crack dislocation is now represented as a 
single dislocation. Furthermore, the crack is 
assumed to be small compared with the specimen 
dimensions and located near the centre of the 
body. This ensures that there is virtually no change 
in interaction energy between the crack dislocation 
with the misfit and surface dislocations for the 
relatively small change in position of the crack 
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Figure 13 (a) Formation of an asymmetric shear crack at 
the dislocation interface shown in Fig. 9b. Simplification 
of (b) Fig. 9b, (c) Fig. 13a. 

dislocation. Under these conditions, the energy 
associated with the crack may be written as 

E T = E~, -- E o . (8) 

Comparison of the above relation with Equation 2 
shows that E s and E I are zero since no crack 
dislocations need be created, as they are already 
present as interface dislocations, and secondly, 
they are assumed to be combined into a single 
superdislocation. Equation 8 can be expanded to 

yield r 
ET = 7r- -  a b ~  (9) 

where Y is the energy per unit area associated with 
the crack surface, while r is the extension or length 
of the crack. It is clear from examination of 
Fig. 9b that the misfit dislocation density per unit 
length of interface is simply 

W - -  W o 
p - ( l O )  

WO 

where w and Wo are the widths of the body before 
and after plastic deformation respectively. If  the 
distortions are not too large, we can write 

w --Wo AL 
- - e ( 1 1 )  

W0 L o  

where Lo is the thickness of the deformed layer, 
AL the decrease in thickness brought about by 
the deformation, while e is the nominal strain. The 



value for b in Equation 9 is thus simply 

b = er (12) 

so that Equation 9 becomes 

E T = 7r-- �89 2. (13) 

A maximum value of E T occurs for the condition 
corresponding to 3ET/Or = 0 and yields 

3' 
oe = - - -  (14) 

e g  e 

Thus, cracks with a size greater than r e will grow 
spontaneously with a continuous decrease in 
energy. Equation 14 is somewhat analogous to the 
Griffith condition associated with the formation 
of an elastic crack in an otherwise perfect crystal, 
which is given by [2, 25] 

(23"Etl/2 
Oc = - - -  ( 1 5 )  

\ nrc I 

where E is Young's modulus. The value of o c 
given by Equation 14, however, is about one 
thousandth the value of that given by Griffith's 
equation. The main reason for this is that, unlike 
the case for the Griffith crack, no crack dislo- 
cations need be created to form the asymmetric 
shear crack at the plastic-elastic interface in 
Fig. 13c. Thus, shear crack formation and 
subsequent propagation with ultimate delami- 
nation of the plastically deformed surface layer, 
based upon the model depicted in Fig. 13c, 
is a relatively easy process. In addition, Equation 
14 shows that the higher the amount of plastic 
strain, the lower the crack propagation stress, 
as expected on physical grounds. 

In general, it is expected that sliding or adhesive 
wear will involve compressive as well as shear 
distortions. The highest internal stresses occasioned 
by these distortions are expected to be concen- 
trated at the plastic-elastic interface. Although 
this interface may possess the tilt-type character of 
the type portrayed in Fig. l lb, as well as the 
misfit-type character, as shown in Fig. 9, it is the 
latter configuration that will respond to the shear 
component of the applied stress in the form of 
asymmetric shear-type cracks. It seems logical to 
assume that the wear rate cb will be proportional 
to the number of pre-existing crack nuclei, N, i.e. 

&eJV. (16) 

The number of these nuclei would in turn be 
inversely proportional to their size, re, so that 

Equation 16 becomes 

1 
cba --. (17) 

r e  

In view of Equation 14, the above relation can be 
written as 

(oa e~ (18) 
7 

Since ae is proportional to the force P acting 
normal to the wear surface via the coefficient of 
friction, Equation 18 becomes 

eP 
d~a - - .  (19) 

3' 

Assuming next tliat the amount of  plastic strain 
e is inversely proportional to the hardness, H, 
Equation 19 can be written as 

k P  
05 - ( 2 0 )  

3 ' H  

which is simply the well-known wear equation 
first developed by Archard [26, 27]. 

5. Summary and conclusions 
The present study has shown that the concept of 
surface dislocations is a powerful one for the study 
of distortions within a body in general, and for 
local distortions near the surface of the body in 
particular. Since the phenomenon of wear is 
essentially one which involves surface distortions. 
The application of surface dislocations to this 
problem seems to be a natural choice. Preliminary 
theoretical studies contained in the present investi- 
gation show that sliding or adhesive wear can be 
readily accounted for in terms of delamination of 
the plastically deformed surface layer from the 
remaining undeformed body. The dislocation con- 
figuration at the interface between the deformed 
and undeformed regions is such as to make shear 
crack initiation and growth at this interface 
relatively easy. It is apparent from Equations 19 
and 20 that perhaps the most important aspect of  
the wear problem concerns the amount of  plastic 
deformation induced into the surface layers of  
the body under consideration. This degree of 
deformation will depend upon the work hardening 
characteristics. This degree of deformation will 
depend upon the work hardening characteristics, 
being low for materials that work harden rapidly, 
and high for low work hardening substances. 
Having taken this initial step, it seems to be a 
relatively simple matter to extend the surface 
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dislocation concept to include abrasive wear as 
well as impact or erosive wear. 
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